首页> 外文OA文献 >LinkedIn Salary: A System for Secure Collection and Presentation of Structured Compensation Insights to Job Seekers
【2h】

LinkedIn Salary: A System for Secure Collection and Presentation of Structured Compensation Insights to Job Seekers

机译:LinkedIn薪资:安全收集和演示系统   求职者的结构性薪酬见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Online professional social networks such as LinkedIn have enhanced theability of job seekers to discover and assess career opportunities, and theability of job providers to discover and assess potential candidates. For mostjob seekers, salary (or broadly compensation) is a crucial consideration inchoosing a new job. At the same time, job seekers face challenges in learningthe compensation associated with different jobs, given the sensitive nature ofcompensation data and the dearth of reliable sources containing compensationdata. Towards the goal of helping the world's professionals optimize theirearning potential through salary transparency, we present LinkedIn Salary, asystem for collecting compensation information from LinkedIn members andproviding compensation insights to job seekers. We present the overall designand architecture, and describe the key components needed for the securecollection, de-identification, and processing of compensation data, focusing onthe unique challenges associated with privacy and security. We perform anexperimental study with more than one year of compensation submission historydata collected from over 1.5 million LinkedIn members, thereby demonstratingthe tradeoffs between privacy and modeling needs. We also highlight the lessonslearned from the production deployment of this system at LinkedIn.
机译:像LinkedIn这样的在线专业社交网络增强了求职者发现和评估职业机会的能力,以及求职者发现和评估潜在候选人的能力。对于大多数求职者而言,薪水(或广义上的薪酬)是选择新工作的关键考虑因素。同时,鉴于补偿数据的敏感性和缺少补偿数据的可靠来源,求职者在学习与不同工作相关的补偿时面临挑战。为了通过透明的工资来帮助世界各地的专业人士优化收入潜力,我们推出了LinkedIn Salary,这是一种用于从LinkedIn会员收集薪酬信息并向求职者提供薪酬见解的系统。我们介绍了总体设计和架构,并描述了安全收集,取消标识和处理补偿数据所需的关键组件,重点关注与隐私和安全性相关的独特挑战。我们使用超过150万个LinkedIn会员收集的超过一年的薪酬提交历史数据进行了一项实验研究,从而证明了隐私与建模需求之间的权衡。我们还将重点介绍从LinkedIn上该系统的生产部署中吸取的教训。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号